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ABSTRACT

Three currently popular excess free energy models (Wilson’s equation, the
NRTL equation, and the LEMF equation) were subjected to a theoretical parametric
analysis to determine limits to their ability to correlate experimental gF and A€ datz.
simuitanecously. The LEMF equation was found to be distinctly superior in its ability
to predict YLE dawa from A" data. Both Wilson’s equation and the NRTL equatior:
were shown to break down to ideal solution models in the limit of large intermolecular
interactions (}A%.... > 200 cal gmol~!) waereas the LEMF cquation does not.
For mixtures whose h* data exhibit maxima less than 100 cal gmol~ ' and which
have positive s* the LEMF equation coupled with the method of Hanks, Gupta, and
Christensen can predict reliable VLE data from A* data. For JA®|,,, > 200 cai
gmol ™}, the LEMF equation/Hanks Gupta--Christensen method is accurate to within
10-15 %, where the other two equations generate errors in excess of 409.

INTRODUCTION

The ability to predict vapor-liquid equilibium (VLE) data accurately and
quickly for non-ideal multicomponent mixtures is of great industrial importance and
interest. Most early attempts! at correlation of VLE data based on Van der Waals
interactiors tended to follow the general pattern of Wohl? which involves a scquence
of terms of increasing complexity representing interactions between larger and larger
numbers of molecules. Each higher order interaction term in turn introduced one or
more adjustable parameters the evaluation of which required VLE data of that order.
That is, ternary interaction parameters requirc temary YLE data for their evaluation,
etc. Thus, axcess free energy models such as these are only correlative in nature, but
not predictive.

Wilson? mtroduoed a new concept, that of “loca’ zompositions,” which Orye
and Prausnitz* showed allowed the genera’ization of binary correlation parameters

* Contribution No. 109 fmm the Thermocheniical Institute of Brigham Young University, Provo,
UT, U.S.A.



42

to multicomponent systems without the need for higher order interaction terms of the
Wohl type. This introduced a predictive capability into multicomponent VLE
cormrelation which was most desirable. Since its introduction, Wilson's equation has
been used, modified, analyzed, and finally accepted as a useful, practicai and generally
accurate model by numerous investigators. Wilson’s local composition concept has
also served as the basis for the development of other useful models. Renon and
Prausnitz® used this concept to develop their now widely used NRTL equation.
More recently, Marina and Tassios® have modified the NRTL equation to produce
the LEMF cquation.

All of these equations, Wilson’s, the NRTL, and the LEMF, have in common
the ability to generalize binary VLE correlation parameters to multicomponent systems
without the need of obtaining multicomponent VLE data.

Hanks et al.” proposed a new technique in which excess free energy models
such as thosc mentioned above are used in the integration of the Gibbs-Helmholtz
relation

c(ym)

thus permitting the prediction of g* (excess free energy) and hence VLE data from A&
(heat of mixing) data. They demonstrated the applicability of this technique to iso-
thermal binary systems. This technique, coupled with the ability to generalize to
multicomponent VLE using onc of the above gF models, opens a whole new field of
VLE prediction. The present authors recently demonstrated the ability of this technique
to predict isothermal® temary VLE data and isobaric® binary and ternary YLE data.

Yonka et al.'® recently pointed out a limitation to Wilson’s equation. They
analyzed the case for an equimolar mixture (x, =: x, =: 0.5) with the two Wiison
parameters A, = A, == A. For this condition they observed that the following
expression for FI* derived from Wilson's equation

*
B =-13a @
leads to the physically unrealistic result H* = 0 as 4 approaches zero (corresponding
to infinitely laree molecular interactions). In eqn (2) H# is the vzalue of H for x; =-
x> == 0.5, where #/ — h*/RT. Furthermore, the function given by eqn (2) possesses a
maximum value % =: 0.278 at the point A == 0.278. This means that for conditions
leadingtoegn (2) (x;, = x, =~ V.3. A, —= A, —— A) Wilsoa’s equation is capable of
simultaneously predicting g& and AF only so long as H* < 0.278. For 25°C this
corresponds to |Af] < 165 cal gmol™ ). The implication of this observation is that
for those systems where [A¥] > 165 cal gmol™ !, Wilson’s cquation is inappropriate
to use in the Hanks-Gupta—-Christensen’ method. Vonka et al.*°, on the basis of the
above observation, concluded that “. .. attempts to fit simultaneously g® and AF
cannot be successful. The recent approach (e.g., Hanks et al.”) to determine gt in
terms of the measured values of A% seems, therefore, illusory and the procedure is of
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limited importance.” This conclusion is entirely unwarranted and irrelevant to the
results which they obtained. All that they showed was the inappropriateness of using
Wilson’s equation beyond the limits observed. The Hanks—Gupta—Christensen
method? is fundamentally sound, since it involves only the integration of the Gibbs-
Helmholtz relation. Any limitations to this method are occasioned only by limitations
inherent in the g5-A% models used.

It is the purpose of the present paper to examine thr:e curremlv popular g®
models — Wilson’s equation, the NRTL equation and the LEMF equation — and
cstablish limits 1o their applicability. These limits will be cxamined both theoretically
and cxperimentally.

THEORETICAL ANALYSIS

The Hanks-Gupta-Christensen method? involves the integration of eqn (1).
The recessity of having a set of g€ data at the base temperature to evaluate integration
constants is obviated by the use of a semi-empirical g model. Three models seem to
offcr considerable promise in theirability to represent real sy stemsand to be generalized
to multicomponent systems. These are the Wilson cquation?, the NRTL equation
of Renon and Prausnitz®, and the LEMF cquation of Marina and Tassios®. We shall
consider each of these equations separately.

The Wilson equation
In terms of the function Q -- g®/RT, Wilson’s equation may be written as

0= — x; In(x; + 1;x;) — x;In(x,7, + x3) 3)
where

T, = %; exp (— G,/RT) @
7, = —2 exp (— G4/RT) ©)

where &, = (g2,. — 2..)and G, = (g,. — g,,) are intermolecular eneray interaction
paramcters. Application of eqn (1) to eqns (3) and (5) produces the following expression
for H

H = X)X [ 7,G, + 7,6, I
RT {x; +7yxy x4 + 73%x5

(6)

for the case where G, /3T =-- ¢G,/¢T = 0. If one sets xy == X3, D[ty — p, T, = pkrt,
and tr, = 1/p, eqn (6) becomes

He = — _l_{r Inz + pk‘tln(k!)} 7

p+T 1 + pkrt
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In eqn (7), the value of k determines the degree of asymmetry in the curve of H* vs.
while the value of p reflects the ¢fi«cts of molecular size disparity.

As Vonka et al.'° showed, when G, becomes very large, corresponding to
extremely nonideal intermolecular interactions, ¢ — 0 and H* — 0. This may easily
be seen to be true from eqn (7) {or any fixed values of k, p. Also, for the completcly
symmetrical case kX — p = 1, they showed that eqn (7) again has the limit zero when
G, — 0 (z — 1). They further showed that for the case k = p == 1, H® possesses a
maximum value /I -~ 0.278 at * = 0.278. If one more closely examines the bebavior
of eqn (7) as a function of its three parameters 1, &, p, one finds a different behavior
from that intimated by Vonka et al.'°. The partial derivatives of eqn (7) with respect
to 17, k, and p are respectively

(2) =‘%‘“‘+”'“_"+£(ﬂf:_) @
ét /xp +1)° t \ ék /px

 GH _ _l,zm[l 4+ pkt + In (k7)]

( ok ) w (¥ pkdt 9
() - - 1{_ _thnz  krln 0“{_} (10)
. Cp ikx 20 (p+11) (1 + pkv)”

It may easily be seen that setting p = 1, k = 1, © -~ 0.278K causes eqns (8){(10)
to vanish simultaneously; the conditions for an extreme value of //*. This is the case

0.60 T T T T T3 T ¥ T T T T ! S | T
6.5 .
.21 =1
o.ssb §
G O ;
C.35F -
0.30 K_—//‘
0.25 L] ] ] (] ] (] ] | B | | S | 3 ] 1 i 3 ] | B

C.5 0.8 1.0 1.2 1-4 1.6 1.8 2.0 2.2 2.4 P ]
Fig. 1. Variation of Ha.x. with p for Wilson’s equation.
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observed by Vonka et al.}?. Figure | shows how the maximum value of H* varies
with p in the physically meaningful range 0.5 < p < 2.5. As p approaches either 0
or co, this curve increases without bound. From Fig. 1, it can be seen that /{* (0.5) ==
03101 (r = 0.2315, k =. 1.3578) and H* (2.5) = 0.3333 (7 = 0.3233, k = 0.6649).
This corresponds to A%y, = 184 cal gmol™! (T — 25°C) when p -= 0.5 and
1Af|oax. = 197 cal gmol ™! (T = 25°C) when p = 2.5.

The consequence of the above parametric analysis is that when Wilson's
equation is used as a two-parameter model, defined as where p is fixed at its physically
real value, there will be a maximum value of H®, given by Fig. 1, above which it is
impossible for Wilson’s equation to represent both g® and AE simultaneously. This
means, that if a binary mixture exhibits a AF -x, curve which has H* greater than the
values of H_ given by Fig. 1, Wilson’s equation cannot be used in the method o;
Hanks, Gupta, and Christensen” to predict VLE data with any degree of confidence.
If one were to ignore the physical significance of p and merely treat it as a third
parameter, the above results indicate that the limiting value of H* may be increased
indefinitely and Wilson’s equation might be expected to perform better. However,
because of the well-known limitation of Wilson's equation when liquid phase separa-
tion occurs, it is doubtful whether this extension of the range of p would have any
practical utility.

The NRTL equation

In terms of the quantities Q = g“fRT and H = K*[RT, the NRTL equation
may be expressed as

0 = xx; [—ﬁ"" - -""2] an

- X; + X,Tf Xj + X513

H =0 —ax;x; [ (12)

x,13G3 x;17G1 ]
(xy + x,73)°  (xp + xy77)*
where 1, = exp(— Gy), 72 — exp(— G»), G, — (212 — &11)/RT, Gy = (g12 — 822)/

RT,and a,(g,> — g4,), and (g,> — g,;) are three adjustablc parameters which are
assumed to be independent of temperature.

If, in eqns (11, 12), one introduces t, = k' z,, recognizes that G, = — In 7,
and G, = — In 7,, and sets x, = x, == 0.5, one obtains
_ 1 {tInz ktintkr) -
Q'—"za‘[1+z+ 1+ ke 13)
1 Jjrlo<t Int ktin (k1) In(kt)
® — . __ J-_"" — — "7 7 E
H Za{ +1:[1+1+1:]+ T ¥ ke [l+1+kz 9

wheret = 13, k = (K')".

From the definition of T,, it follows that fore > Q0ast, -+ 0,7 — 0‘conmponding
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to G, — 0. This represents the cases of very large intermolecular interaction para-
meters, and hence highly non-ideal solutions. In this limit eqns (13) and (14) reveal an
interesting difference between the NRTL equation and Wilson’s equation. Comparing
eqn (13) and eqn (7), it is evident that Q* for the NRTL cquation depends on k, z in
exactly the same formal sense as does H* for Wilson’s equation for the case p = 1.
Thus, it is evident that in the present case Q* —» 0 as T — 0. That is, the NRTL
equation suffers from a more serious limitation in the case of highly non-ideal
solutions than does Wilson’s equation because the g% expression for the NRTL
equation degenerates to an ideal solution model when G, becomes large. O* from
eqn (12) possesses a2 maximum value @, .. = 0.2785/x at T = 0.2785 for the case k =
1. This means that in the symmectrical casc (k = 1), the NRTL equation is limited at
25°C to data for which |g¥] < 165/x cal gmol ~ !. For many binary mixtures, Renon
and Prausnitz® recommend 2 = 0.3-0.4 which for the above limit means that |gf] <
550 cal gmol ™! (z == 0.3) or 413 cal gmol ! (= = 0.4).

Q. or ii.
0.4 -1
5.5} -
-0.6} -
0 o 0.4 - 1.2 43
T

Fig 2. Vanation of @’ — — aQ® and H’ -~ —all‘wxdlthcparaxmu:rr— 3 for the NRTL
equation Forthiscase k = f,a > 0.
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We now consider the H* function. For the special symmetrica® case (kK = 1),
eqn (14) reduces to .

2
H' k=1 =1 [‘t In t -t(lnt)z] s
1+ (1 + 1)

Again, as T — O(z > 0), we find H*(k = 1) — 0. Figure 2 shows how Q*(k = 1)
and H*(k = 1) vary with 7. It is evident that //* possesses two extreme values, one
of opposite sign to Q* and one of the same sign as 0* showing that the NRTL
equation has a greater degree of flexibility for simultancous representation of gF and
KE than does Wilson’s equation.

The two extremes in the H* curve in Fig. 2 occur at ¢! = 0.05 (H* = 0.264/2)
and 1 -= 0.575 (H* = — 0.131/a). For o = 0.3 this means if A% is of opposite sign
to gF, simultaneous representation of AF and gF is possible only if |h'5| < 521 cal
gmol ™! (at T == 25°C). Azam for a = 0.3, if AF is of the same sign as g%, simultaneous
representation of AF and g& is possible only if |Af] < 259 cal gmol ™! (at T == 25°C).
These limits are a little larger than the one found above for Wilson’s equation.
Vonka et al.'°, also showed that the NRTL equation is incapable of representing
AE and gF simultanecously whenever s® changes sign in the interval 0 < x; < 1.

The effect of & on the cxtrema in Q* and J7* is illustrated in Fig. 3 from which
it 's seen clearly that the maximum limits of O* and H* are achieved when & — 1.
Figure 3 also shows that, if &k < 0.25, the NRTL ecquation loscs entirely its ability
to represent A* and g* data of the same sign.

The effect of the parameter x on Q% and H* is monatonic as may be secen if one
considers eqns (13) and (14). This follows since for any given @ > 0, there will exista
7, = t'* and a k&’ =: k'/* which make the previously discussed results valid. Thus,
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k
Fig. 3. Variation of maximum values of ' = — aQ® and H’ = — aH* with k for the NRTL

equation.
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both Q* and H* vary inversely with = as already discussed. The larger the value of
that is required, the more limited is the range of 4% for which simultaneous representa-
tion of gF and AF is possible with the NRTL cquation.

The NRTL equation is not restricted to one liquid phase system as is Wilson’s
equation and hence, is more versatile. In view of this greater flexibility, it is not
surprising that the NRTL equation has been found” to be more versatile in predicting
VLE data from Af data.

The LEMF equation

If the parameter « is allowed to be freely adjustable rather than set at 0.3-0.4
as suggested by Renon and Prausnitz?, it is often observed to have negative values®: 3.
Marinz and Tassios® performed an analysis of the NRTL equation’s ability to fit

VLE data as a function of the parameter 2. They observed thatax = 0.3 and z == — |
were two values which consistently produced minimum values of standard deviations
of YLE data fits, with the lowest values corresponding to 2 -—= — 1. They named the
NRTL equation with x == — 1 the LEMF equation®.
For this model the quantities Q = gF/RT and H = h*{RT are given by
0=xm 2 s O] (16)
xl T xztl Xa =+ -tltn
H = 0 + x;x3 [.—i'-r—zci 5 + *2iGi z] (17)
(x2 + x;52)° (x; + x37y)

where G, = (g, — £1/RT, G = (8,2 — £22)/RT, 1, = exp (— G,), and 1, =-
exp (— G.). Again (g32 — &11) and (g2 — £22) are assumed 1o be independent of
temperature.

Recognizing that G, = — In 7,, G, = — In 7, and setting 7, = k 7,, x;, —=
x, = 0.5, one can rewrite eqns (16, 17) as

1} Inty | Inckry)

s _ | CRR TR

e* = 2175, " 1+ key (18)
. 1§z, T lntl] . In(kz)) [ __kty In (k1,) ]|

HY = 'z'{i:";: [’ 135) " Tk, L~ ¥ b (19)

From eqns (18, 19), it can be shown that as z; —+ 0(G; — o) both 9* and H*
become unbounded. Also, as ©, becomes simall, ¢* and H* approach one another.
This means that in this limit $S* — 0 (S* =: s8/Rforx, = 1/2).Since Q — H = —
s¥/R, it follows from eqns (16, 17) that

b el
st x,72G> . x27,Gy
— = XX 2 T 2
R (X2 + X473) (x; + x,7y)

(20)

Equation (20) shows that the LEMF equation always predicts positive excess entropies.
Thus, regardless of the values of & or r,, the LEMF equation cannot simultaneously
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represent A£ and gF when |4F| < |gfl. This means the whole class of fluids having
negative st is excluded as is the class for which s* changes sign in the interval 0 <
x, < 1. This exculsion is similar to that observed by Vonka et al.!%, for the NRTL
equation with 2 == 0.3. It is more severe, however, in that s*/R for the NRTL equation
is given by eqn (20) multiplied by — «. Thus, depending upor the sign of =z, the
NRTL equation can predict either positive or negative s*/R whereas the LEMF
equation is restricted to sE/R > 0.

Since eqns (18, 19) become unbounded as z; — 0, it follows that the maxima
exhibited by both Wilson’s equation and the NRTL equation do not exist here. Thus,
provided s is positive, the LEMF equation is not restricted to some low range of kF
values. Since there are no maxima, the effects of k are of no concern and need not be
investigated.

EXPERIMENTAL COMPARISONS

The preceding analysis has revealed several theoretical limitations to the
capability of these excess free energy models to represent g~ and 4" simultaneously.
In this scction of the paper, scveral aspects of the present method will be examined
in comparison with actual data.

When utilizing experimental data taken from a variety of sources in the literature,
one is constantly faced with variability of quality and experimental error. Since the
method of Hanks et al.7 relies heavily upon such data, it is limited by the intrinsic
quality of the data. Onc can thus raise two questions in relation to the actual data
themselves: (1) What is the intrinsic level of accuracy to be expected from the literature
data? (2) How do errors in the AE data propagate into the predictions of VLE data.

The first question is important in establishing a background “noise level”
against which the reliability of the basic method may be judged and the effects of
model limitations such as those described above assessed. In order to evaluate the
basic A% data, two systems were considered which had been studied by different
investigators under the same conditions. They are: (I) n-Heptane(l)-toluene(2); and
(II) acetonitrile(1)-benzene(2).

Both systems were treated as follows. One set of AF data was arbitrasly selected
as a reference set and treated as being correct. The second set of AF data was compared
to the first statistically and a standard deviation computed. In this way, an estimate
of the variability of A* data due to different investigators is obtained. To obtain an
cstimate of how errors in the AF data propagate into the VLE data, cach of the sets
of NRTL parameters (one set was obtained for x = 0.3, one for « freely floating)
obtained from the two different authors’ sets of A data were.used in the NRTL
equation to compute VLE data. One set of VLE data thus computed was arbitrarily
chosen as a reference and the other compared with it statistically. In this manner the
standard deviation in the VLE data caused by a certain standard deviation in the 4*
data could be assessed. The results of these calculations are shown in Table 1. From
these results, it can be scen that the errors in AF are decreased by approximately a
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TABLE 1

EVALUATION OF EFFECTS OF EXPERIMENTAL ERRORS IN AE DATA ON PREDICTED VLE DATA

System Temp. (°C) k(%) SYLE(%) a Ref.
I 25 — — — 11¢
1 25 19.84 5.61 03 2
1 25 19.84 9.29 0.5711 12
w 45 — —_ - 13¢
1 45 6.63 1.35 0.3 T 14
n 45 6.63 3.87 —2.366 14

s n-Heptane(1)-toluene(2). ® Acetonitrik(1)-benzene(2). © These data were arbitrarily selected as the
reference for comparison purposes.

TABLE 2

DETERMINATION OF VARIABILITY OF FEXPERIMENTAL VLE DATA

Systern No. Temp. (°C) Gy, ( 73) Ref.
IIi= 70 —_ 16
111 70 434 17
I 70 196 18
1v> 60 —_ 19
v 60 208 20
ye 40 — 21
\'4 40 3.23 »
A" 60 —_— 21
\'/ 60 2. 2
via 45 —_ 23
VI 45 149 24

& Benzene(1)}-cyclohexane(2). b Benzene(1)-n-heptane(2). © Cyclohexane(1)-n-heptane(2). 4 Benzene
(1)-n-hexane(2).

factor of three in the VLE data. Thus, a 209 error in A* produced an average error
of about 7.5% in the VLE for system I while a2 7% error in A produced an average
error of about 2.6%, in VLE for system I1. These results are consistent with the error-
smoothing feature inherent in the integration processes employed in the method. It
appears that errors of as much as 209 in AF are possible when using literature data
sources. One may thus conclude that uncertainties of 3-7% due to variability of to
AF data might be anticipated. Thus, VLE predictions which agree within 3-79; with
observed data should be considered to be acceptable to within the intrinsic accuracy
of the data.

Another potential source of uncertainty in the predicted data are experimental
inaccuracies of the VLE data themselves. In order to evaluate this source of errors
four systems (one at two different temperatures) were studied. They are: (III). Benzene
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(1)-cyclohexane(2); (IV) benzene(1)-n-heptane(2); (V) cyclohexane(l)-n-heptane(2),
(VD) benzene(l)-n-hexane(2). As with the A® data, one set of data was arbitrarily
chosen as a reference and a standard deviation of the other authors’ data in comparison
was calculated. The results of these calculations are shown in Table 2, from which
it appears that most investigators agree with one another to within about 2-3%.

Based upon the above analysis of A* and VLE data, it appears that one can
reasonably anticipate an uncertainty of from 5-10%, in VLE data predicted from A
data in comparison with experimental values due just to the average uncertainities
in expenimenial daia and exclusive of any modeling effecis. Therefore, predictions of
VLE data made from A® data which compare with experimental data within 5-10%
may be considered acceptable.

The final effect to be explored experimentally is the influence of #F values which

re increacinaly laroer than the thearetical limitino valuec nradicted in the firse p:'."'

ACACGASINInAy IAiSUs LIl Lail LAALRSA T ASqal 25 TEMULS privilatalla i i siaok

n

of this paper. In order to do this, five bmary systems were chosen which have |A®|,,
values ranging from 44 tc 414 cal gmol™'. The five binary systems are (in nrdpr

232225 L2414 AL AR, 23 22 Lriilis [-2 8 =)

of increasing |A%|...): (VII) Cyclohexane(l)—n—hexane(’), (VIII) methylacetate(l1)-
benzene(2); (III) benzene(l)-cyclohexane(2): (VI) benzene(l)-n-hexane(2); (IX)
methylacetate(1)-cyclohexane(2).

Each of these five systems was analyzed by the method of Hanks et al.* using
Wilson’s equation, the NRTL equation, and the LEMF equation. Table 3 contains
a listing of the parameters obtained and the quantity SZ, which is a statistical measure
of the fit of the A® data and is the function minimized by the curve-fitting routine®®
used. The quantity S2 is defined by

Sez = :V '__—T)Z [r::a!c hflpl 12 (?-l)

From the values of S2 in Table 3, it is clear that Wilson’s equation provided pro-

TABLE 4

EFFECT OF {A™ max. ON VLE FITS FOR THE WILSON, NKTL, AND LEMF EQUATIONS

System T(°C) Ref. Gy* Bl max.(cal gmoi- )
Wilom NRTL®  NRTLe  LEMF

Viie 70 17 24.6 6.63 1.46 5.5 2

VIIiI= 30 25 17.0 13.3 13.4 9. 19 90

g 10 26 1472 35.7 21.4 19.0 194

Vs 25 2% 159 127 12.1 12.1 205

IX» 35 25 — 1026 4.2 20.1 414

3 gy = (051 + Oy4)/2 = average %, standard deviation of fit of VLE data. ® a = 0.3; 2-parameter

NRTL equation. € e = Free; 3-parameter NRTL equation. ¢ Cyclohexane(1)-n-hexane(2). ¢ Msthyl-
acetate{1)-benzene(2). ¢ Benzene{1)}-cyclohexane(2). £ Benzene{1)-n-hexane(2). b h.lﬂhvhcd:udl\_

s Sr 2 S bt Libi=2 1)

qdoh:xane(Z) 1 WIlson s equation not applmblc here. See text.
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Fig. 4. Variation of oy with {A5{xe: for Wilson’s equation, the 2-parameter NRTL and 3-parameter
NRTL cquations, and the LEMF equation for five different systems.

gressively worse fits as |h*|_,, increased. The other equations retained roughly
equivalent fits for |Af|,,, < 200 cal gmol~ !, becoming worse for |AF]_,, > 400.
For system (IX), the LEMF equation was best able to fit the A data.

Each of the sets of parameters in Table 3 was used to compute VLE values
which were then compared with experimental data for each of the five systems. The
results are shown in Table 4 and also displaved graphically in Fig. 4. Also shown in
Fig. 4 are the theoretical limits estimated above for Wilson's equation and the two-
parameter NRTL equation. The very large value of S7 given for system (IX) with
Wilson’s equation in Table 3 shows that for this system Wilson’s equation was
incapable of fitting the A" data. For this rcason, no point for o, is included in Fig. 4
for system (IX). The curve in Fig. 4 for Wilson’s equation is not defined above about
250 cal gmol ~!.

From these results, several things are clear. As [A%]_., increases, there exists a
definite increase in the deviation between predicted and actual VLE data. This is as
anticipated based on the theoretical aralyses given earlier. Figure 4 shows that both
Wilson’s equatior and the two-parameter NRTL equation begin to develop un-
acceptably large errors in the predicted VLE data at |A®|,,, values significantly lower
than the theoretical limits. Figure 4 also shows that the order of effectiveness for
predicting VLE data from 4® data in order from best to worst is LEM F—3—parametcr
NRTL-2-parameter NRTL-Wilson.

Figure 4 further shows that for |A%|.,, < 200 cal gmol™ !, the LEMF
equation is of equal accuracy with the 3-parameter NRTL equation but for |#*.,, >
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200 cal gmol™*, the LEMF equation is distinctly superior to any of the others.
Of particular interest, is the fact that the LEMF equation appears tc reach an
asymptotic limit of ¢, = 209 for large |A%],,- values while all the others appear to
produce o, values which increase indefinitely as [AF],,, increases.

CONCLUSIONS

A combined theoretical and experimental analysis of the paramectric behavior
of three currently popular g* models has revealed a number of significant limitations
*o these models when they are used to correlate gF and 4® simultancously. The
existence of these limitations is of importance in determining the successfulness of the
Hanks-Gupta-Christensen method of predicting VLE data from #%® data. The
conclusions which may be drawn from the present analysis are as follows.

(1) The LEMF equation is distinctly superior to either the Wilson or the
NRTL equations in its ability to predict VLE data from AE data for systems having
positive sF.

(2) Both Wilson’s equation and the NRTL equation (either two- or three-
parameter versions) approach ideal solution behavior in the limit of large inter-
molecular interactions. This behavior means that as the values of 4% increase, both
equations will provide increasingly poor simultaneous representations of gt and A~.

(3) The LEMF equation does not approach ideal solution behavior in the limit
of large intermolecular interactions. Consequently, it is capable of maintaining some
degree of success in simuitaneously representing g€ and AF as 4% becomes large.

(4) For [A%].... < 100 cal gmol~ ', both the NRTL and LEMF equations
are reliable predictors of VLE data from 4F data. However, if |AF|,, exceeds 200
cal gmol™*, only the LEMF cquation produces reliable results.

(5) For [A%|.... > 200 cal gmol~!, the LEMF equation produces VLE
data with a2 maximum of g, of 207/, while the other two equations produce g, values
which appear to increase indefinitely as 4%}, increases.

(6) There is an inherent uncertainty in VLE data predicted from k% data of
from 5--109% which is independent of g% models.

(7) The LEMF equation, coupled with the Hanks-Gupta—-Christensen method,
can produce VLE data which are fully reliable (that is, 6, < 109%) whenever [h%},,,. <
100 cal gmol™"' and which are at most 10-15% in error (that js, o, < 20%) if
[A%}oes. > 200 cal gmol™! and sE > 0.

(7) The LEMF equation is not capable of representing gF and A% simultaneously,
if s* changes sign in the composition interval 0 < x, < I, orif s¥ < 0.

It would appear from the present analysis that a fruitful field of endeavor would
be to develop an excess property model which retains the desirable qualities of the
LEMF model but which also accounts for more realistic variations of s with com-
postuon.
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